Activity of smooth pursuit-related neurons in the monkey periarcuate cortex during pursuit and passive whole-body rotation.

نویسندگان

  • K Fukushima
  • T Sato
  • J Fukushima
  • Y Shinmei
  • C R Kaneko
چکیده

Smooth pursuit and vestibularly induced eye movements interact to maintain the accuracy of eye movements in space (i.e., gaze). To understand the role played by the frontal eye fields in pursuit-vestibular interactions, we examined activity of 110 neurons in the periarcuate areas of head-stabilized Japanese monkeys during pursuit eye movements and passive whole-body rotation. The majority (92%) responded with the peak of their modulation near peak stimulus velocity during suppression of the vestibuloocular reflex (VOR) when the monkeys tracked a target that moved with the same amplitude and phase and in the same plane as the chair. We classified pursuit-related neurons (n = 100) as gaze- velocity if their peak modulation occurred for eye (pursuit) and head (VOR suppression) movements in the same direction; the amplitude of modulation during one less than twice that of the other; and modulation was lower during target-stationary-in-space condition (VOR x1) than during VOR suppression. In addition, we examined responses during VOR enhancement (x2) in which the target moved with equal amplitude as, but opposite direction to, the chair. Gaze-velocity neurons responded maximally for opposite directions during VOR x2 and suppression. Based on these criteria, the majority of pursuit-related neurons (66%) were classified as gaze-velocity with preferred directions uniformly distributed. Because the majority of the remaining cells (32/34) also responded during VOR suppression, they were classified as eye/head-velocity neurons. Thirteen preferred pursuit and VOR suppression in the same direction; 13 in the opposite direction, and 6 showed biphasic modulation during VOR suppression. Eye- and gaze-velocity sensitivity of the two groups of cells were similar; mean (+/- SD) was 0.53 +/- 0.30 and 0.50 +/- 0.44 spikes/s per degrees /s, respectively. Gaze-velocity (but not eye/head-velocity) neurons showed significant correlation between eye- and gaze-velocity sensitivity, and both groups maintained their responses when the tracking target was extinguished briefly. The majority of pursuit-related neurons (28/43 = about 65%) responded to chair rotation in complete darkness. When the monkeys fixated a stationary target, more than half of cells tested (21/40) discharged in proportion to the velocity of retinal motion of a second laser spot (mean velocity sensitivity = 0.20 +/- 0.16 spikes/s per degrees /s). Preferred directions of individual cells to the second spot were similar to those during pursuit. Visual responses to the second spot movement were maintained even when it was extinguished briefly. These results indicate that both retinal image- and gaze-velocity signals are carried by single periarcuate pursuit-related neurons, suggesting that these signals can provide target-velocity-in-space and gaze-velocity commands during pursuit-vestibular interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pursuit-related neurons in the supplementary eye fields: discharge during pursuit and passive whole body rotation.

The primate frontal cortex contains two areas related to smooth-pursuit: the frontal eye fields (FEFs) and supplementary eye fields (SEFs). To distinguish the specific role of the SEFs in pursuit, we examined discharge of a total of 89 pursuit-related neurons that showed consistent modulation when head-stabilized Japanese monkeys pursued a spot moving sinusoidally in fronto-parallel planes and/...

متن کامل

Brain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.

Eye-head (EH) neurons within the medial vestibular nuclei are thought to be the primary input to the extraocular motoneurons during smooth pursuit: they receive direct projections from the cerebellar flocculus/ventral paraflocculus, and in turn, project to the abducens motor nucleus. Here, we recorded from EH neurons during head-restrained smooth pursuit and head-unrestrained combined eye-head ...

متن کامل

Representation of Neck Velocity and Neck–Vestibular Interactions in Pursuit Neurons in the Simian Frontal Eye Fields

The smooth pursuit system must interact with the vestibular system to maintain the accuracy of eye movements in space (i.e., gaze-movement) during head movement. Normally, the head moves on the stationary trunk. Vestibular signals cannot distinguish whether the head or whole body is moving. Neck proprioceptive inputs provide information about head movements relative to the trunk. Previous studi...

متن کامل

Neuronal responses related to smooth pursuit eye movements in the periarcuate cortical area of monkeys.

To examine how the periarcuate area is involved in the control of smooth pursuit eye movements, we recorded 177 single neurons while monkeys pursued a moving target in the dark. The majority (52%, 92/177) of task-related neurons responded to pursuit but had little or no response to saccades. Histological reconstructions showed that these neurons were located mainly in the posterior bank of the ...

متن کامل

Role of the cerebellar flocculus region in the coordination of eye and head movements during gaze pursuit.

The contribution of the flocculus region of the cerebellum to horizontal gaze pursuit was studied in squirrel monkeys. When the head was free to move, the monkeys pursued targets with a combination of smooth eye and head movements; with the majority of the gaze velocity produced by smooth tracking head movements. In the accompanying study we reported that the flocculus region was necessary for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2000